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Overview

• The challenges
– Lots o’ sequences
– Changing databases

• Local search methods
– BLAST: seeded searches

• Plain old BLAST
• Discontiguous MEGABLAST!!!
• PSI-BLAST

– Burrows-Wheeler alignment
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Sequence Databases

Store several different types of sequence data:

DNA sequences 

(individual genes, genome fragments, complete genomes)

Protein sequences

Usually inferred from corresponding gene sequence

RNA sequences

Snapshot of what cell(s) are doing - splicing complexity

3



Considerations

4

Data type (duh!), size and provenance

Modes of access: queries, browsing, APIs

Documentation / stability / support / persistence

Reliability of information



National Center for 
Biotechnology 
Information
(GenBank)

Reference genomes,
Gene sequences, 
Taxonomy, ESTs, Journal 
articles(etc…)
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European Molecular Biology Laboratory – 
European Bioinformatics Institute

Nucleotides,
Genomes,
Protein function,
Protein-protein
   interactions

6



CARD
the Comprehensive Antibiotic Resistance 
Database

Genes (>5000)
Custom homology tool
Carefully curated ontology

7



GOLD
Genomes Online Database

Genome projects

Standards-compliant metadata

8



Kyoto Encyclopedia of Genes and Genomes

Genomes
Orthology information 
Protein functions
Biochemical pathways

Limited access now
(#%#!)

9



A word about “metadata”

$@*#(*!)!!

10
2011



These databases are huge

Release 182 (February 2011): 124,277,818,310 bases, from 132,015,054 reported sequences
Release 200 (February 2014): 157,943,793,171 bases, from 171,123,749 reported sequences
Release 212 (February 2016): “We’re sorry, but the page cannot be found”
Release 223 (December 2017): 249,722,163,594 bases, from 206,293,625 sequences

Whole-genome shotgun: > 500,000,000,000 bases
Release 236 (December 2019): 399,376,854,872 bases, from 216,214,215 sequences

Whole-genome shotgun: 7,323,655,233,013 bases
Release 240 (October 2020): 698,688,094,046 bases from 219,055,207 sequences

Whole-genome shotgun: 9,627,627,030,647 bases
Release 246 (October 2021): 1,014,763,752,113 bases from 233,642,893 sequences

Whole-genome shotgun: 15,089,161,465,959 bases
Release 252 (October 2022): 1,562,963,366,851 bases from 240,539,282 sequences

                    Whole-genome shotgun: 18,787,298,109,534 bases

206293625 loci, 249722163594 bases, from 206293625 reported sequences 



Sequence of Interest…

argH gene

GenBankHomologous sequences:
-Evolutionary conservation
-Annotated functions
-Presence / absence in other organisms

(phylogenetic profiles) 12



Best Approach

Use exact local alignment (i.e., Smith-Waterman) to 
find optimal matches between query sequence and 
all database sequences

This is impractical given S-W complexity (although 
hardware and software speedups exist)

We need heuristics!!

13



What we really need

• Search methods that are not necessarily 
perfect, but maintain high levels of sensitivity 
and specificity relative to S-W

• Statistics to tell us when observed similarities 
are likely to be significant 
– the expectation value – how many matches to the 

database are expected by chance?

14



An important tradeoff…
NQARP
DEAKP

Score each pair of residues –
consider every possible
alignment

Require an exact match of length
L to “seed” the alignment

D E A K P

N

Q

A

R

P
15
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FASTA
(Pearson and Lipman, 1988)

• Define the ktup parameter, which is the 
minimum length of exact match needed to 
seed an alignment

• Nucleotides: ktup typically 4-6

• Amino acids: ktup 1-2

16



FASTA uses a lookup table to store k-tuple values

NQARP

AR 3

NQ 1

QA 2

RP 4

DQATS

AT 3

DQ 1

QA 2

TS 4

17
Offset = start(QA, NQARP) – start(QA, DQATS) = 0



Find ‘diagonals’  (no gaps!) in the sequence plot that have a 
high proportion of matching k-tuples

(PAM250 is used to weight matches of different k-tuples)

18

WW = woo!
AA = meh

Additional steps: choose and rescore best diagonals
Statistics: randomization approach (many replicates)



BLAST
(Altschul et al., 1990)
(Altschul et al., 1997)

• Basic Local Alignment Search Tool

• FASTA isn’t fast enough!

• Can we trade away small amounts of 
optimality for further gains in performance?

19



Basic Principles of BLAST

• Exact matches are great and all, but they’re 
not perfect

• Find maximal high-scoring pairs: for a query / 
database sequence pair, find the best region(s) 
where:
– The local alignment score (no gaps allowed!) is 

above a threshold S, and

– The score cannot be increased by extending or 
trimming the local alignment (∴ maximal)

20



Basic Principles of BLAST

• Instead of running full DP (à la S-W):

1. Identify matches that contain two word pairs (or 
hits) of length w, with a score of at least T, that 
are separated by no greater than A nucleotides

2. If word pairs are found, use these to seed  the 
high-scoring pairs

3. If HSPs are found, perform dynamic 
programming anchored with HSPs to complete 
the alignment

21



Extending to high scoring pairs

22

w1 = 4 w2 = 4

d(w1,w2) < A

Try to extend matches, stop trying when a move drops the score
below a given threshold

S
1

S
2



Gaps

• Start from the middle of the high-scoring pair, 
and proceed with DP forward and backward 
until the path falls below a threshold

• DP is expensive, but we’ve saved ourselves a 
lot of time!
– Most sequence pairs are not homologous

– Anchored DP will be a lot faster

23
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HSP anchor

DP search



Local alignment significance

• How are alignment scores distributed?

• More to the point, what is the distribution of 
best alignment scores between a random pair 
of sequences?

• Follows the extreme 

value distribution

25



Karlin-Altschul statistics 
aka no permutations, thanks

• The expected (=mean) score between a pair of 
random sequences is the mean of an extreme value 
distribution

• Given a scoring matrix (such as PAM250) and a set of 
amino acid frequencies, we can compute the 
parameters λ and K that define this distribution

26



Karlin-Altschul statistics

27
P(S >     )    

Observed score

Score from
EVD



Karlin-Altschul statistics

• Different matrices (PAM, BLOSUM, etc.) define 
different EVDs – different K and λ 

28

• We can normalize the search score S to 
equalize the effects of different matrices:

So we can compare bitscores from different 
matrices directly 



From P to E

Expectation value (e-value): 
The expected number of hits to a database of 
random sequences of the same total length as the 
“real” sequence databases

n = query sequence length

m = database length

29
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Protein-protein BLAST (BLASTP):
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins

Match parameters

Scoring

Database

Algorithm

Query



PSI-BLAST (1997)

• Replace trusty old PAM or BLOSUM with a 
position-specific scoring matrix

• Iterate query – Position-specific scoring matrix 
(PSSM) procedure

31



Step 1

Run BLAST!

32



Step 2

• Collapse significant local alignments into a 
multiple alignment

33

Gaps!

E-value not good enough!



Step 3

• Build a column-specific matrix from the multiple 
alignment – this is similar to the PAM matrix

• Pseudocounts (based on substitution matrix) are 
added to avoid the embarrassing -∞ situation

34

Position 1 Position 2 Position 3

A 1.9 -4.0 -2.2

C -5.0 -2.4 -3.1

D -2.3 -0.5 0.1

…



Step 4

• Iterate the search: BLAST using the profile 
rather than a single sequence, as the query

• When do we stop?
– When no new hits are found

– When we get tired of hitting the ‘BLAST!’ button

35



BLAST vs. FASTA

• In very rough terms, BLAST is about ten times 
faster than FASTA (but it depends on the data 
set and the specific tweaked version of the 
programs)

• FASTA is generally thought to be more 
sensitive than BLAST (although this again 
depends on the data set)

36



Discontiguous MEGABLAST
and PatternHunter

• BLAST isn’t fast enough!

• Can we (etc…)

37



MEGABLAST!!!

38



39

Nucleotide seed length

BLASTN!: 11111111111

MEGABLAST!!!: 
1111111111111111111111111111



BLASTN is good for distant-ish sequences 
(but why not use BLASTP?) but kinda slow

MEGABLAST!!! is good for very, very, very similar 
sequences and fast

40

Happy medium???



Continuous Words

• BLASTN (for nucleotides) has a word length of 
11 to find the initial hits. This word must be 
contiguous

AAACGATCCGAAAGTTT
GCACGATCCGAAAATCC

41



Discontinuous Words

Search for words defined by a ‘model’:

 Model: 111010010100110111
 AAACGAACAGAGAGTTTC
 AAATGATCCGAAAGCTTC

42
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Similar accuracy

PatternHunter: Ma et al., 2002
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PatternHunter is quite a bit faster than the contiguous-word
BLAST family

But it costs money!

Li et al. (2002) Bioinformatics
Reviewed in Stojanov (2018) Annals of West University of Timişoara



Other important issues

• Low complexity sequence (e.g., AGAGAGAG) 
can lead to inflated statistics and should be 
removed prior to the search

• We are still dependent on the choice of 
substitution matrix!

45



DIAMOND: faster BLAST with several 
tricks

• Double indexing: precompute all “seeds” in the 
database and query sequences, compare in 
lexicographical order (memory cache efficient)

• “Shaped” seeds (similar to discontiguous 
MEGABLAST, but for proteins)

• Reduced amino acid alphabet!
[KREDQN] [C] [G] [H] [ILV] [M] [F] [Y] [W] [P] [STA]

• Other stuff

46Buchfink et al. (2015) Nat Meth
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Non-pretty 
example

• 1273 genomes of 
Enterococcus faecium vs. 
21,000 reference genomes 
from RefSeq

• The big question: are there 
genes in Enterococcus with 
very, very, very similar 
homologs in distantly 
related groups of bacteria?

48
https://fineartamerica.com/featured/3-entero
coccus-faecium-sem-scimat.html



DIAMOND-BLASTX
• Query: protein-coding genes from an E. faecium plasmid

• Database: predicted proteins from 21,000 genomes

• VERY stringent thresholds: minimum 99% identical, at least 90% of total length

• Run locally

49

Not super-informative

RefSeq ID! Resistance to tetracycline (bad)

Resistance to multiple drug classes (very bad)

???
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STILL NOT FAST ENOUGH!!!
The Burrows-Wheeler Transform



Resequencing

51

100K
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Reference human assemblyDNA sequencing



Li and Durbin, Bioinformatics 2009

BWA: 
The Burrows-Wheeler Aligner

SUFFIX
ARRAY

BWT
STRING



Li and Durbin, Bioinformatics 2009

BWA: 
The Burrows-Wheeler Aligner

SUFFIX
ARRAY

BWT
STRING

Finding ‘go’:

Finding ‘goo’:
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Recursive search by adding prefixes

Min, max rows that 
have word W as prefixMin, max of word W

prefixed by character a

Count of non-$ characters
smaller than a

# of occurrences of a in
BWS up to max(W)

min($) = 0
max($) = 6

Exact match exists only if min <= max
for entire searched word (Ferragina and 
Manzini, 2000)
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Recursive search by adding prefixes

BWT
STRING

ORIGINAL
STRING

ool

ool
min(ool) = C(o) + O(o,min(ol) -1) + 1 = 3 + 3 + 1 = 7

max(ool) = C(o) + O(o,max(ol)) = 3 + 3 = 6

l
min(l) = C(l) + O(l,min($) -1) + 1 = 2 + 0 + 1 = 3

max(l) = C(l) + O(l,max($)) = 2 + 1 = 3

ol
min(ol) = C(o) + O(o,min(l) -1) + 1 = 3 + 1 + 1 = 5

max(ol) = C(o) + O(o,max(l)) = 3 + 2 = 5

min(ool) > max(ool) = ???



Why this is awesome: Sequence reads are 
effectively searched against different parts of 
the reference genome at the same time

Also, notice that the formula only makes use of the BWT string – 
everything else can be forgotten

57



• Why this is slightly less awesome: 
Preprocessing requires many GB of memory

• What about mismatches?

58



Backtracking

59

Searching for “ggta” in a 
string that lacks “ggta” 
but has a one-mismatch 
alignment to “ggtg”

Langmead et al. (2009)
Genome Biol



BWA refinements

Allowing mismatches: maximum deviation from 
the search string
• Store searches in a heap to prioritize the 

lowest mismatches in the search so far
Custom penalties for mismatches, insertion and 
deletions
Double indexing: BWTs from both ends meet in 
the middle (avoids massive amounts of futile 
backtracing)

60



Memory refinements: store only parts of the 
BWT and O matrix, calculate the rest on the fly

61
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SOAP2: somewhere between 300x and 1200x faster than BLAST
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Where to try

• BLAST
– http://www.ncbi.nlm.nih.gov/BLAST/

• Different variants are included in different options
• MEGABLAST!!! and Discontiguous MEGABLAST!!! are options for BLASTN

– BLAST+ package:
• http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download

• FASTA
– http://www.ebi.ac.uk/fasta33/

• SSEARCH for Smith-Waterman alignment
– Included in the FASTA package (ftp://ftp.hgc.jp/pub/mirror/virginia/fasta/) 

• BWA:
– http://bio-bwa.sourceforge.net/
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