E SEQUENCESEQUENCE SEQUENCESEQUENCE SEQUENCE NCE SEQUENCESEQUENCE SEQUENCESEQUENCE SEQUENCE NCE SEQUENCESEQUENCE SEQUENCE SEQUENCE NCE SEQUENCESEQUENCE SEQUENCESEQUENCE SEQUENCE NCE SEQUENCESEQUENCE SEQUENCE SEQUENCE

Overview

- The challenges
 - Lots o' sequences
 - Changing databases
- Local search methods
 - BLAST: seeded searches
 - Plain old BLAST
 - Discontiguous MEGABLAST!!!
 - PSI-BLAST
 - Burrows-Wheeler alignment

Sequence Databases

Store several different types of sequence data:

DNA sequences

(individual genes, genome fragments, complete genomes)

Protein sequences

Usually inferred from corresponding gene sequence RNA sequences

Snapshot of what cell(s) are doing - splicing complexity

Considerations

Data type (duh!), size and provenance

Modes of access: queries, browsing, APIs

Documentation / stability / support / persistence

Reliability of information

\mathcal{N}	NCBI		onal Ce	nter for B ary of Medicine	iotechno Natio	logy Info	rmation f Health			
PubM	ed All Data	abases	BLAST	OMIM	Books	TaxBrows	er Structure	Natio	nal Cen	ter for
Search	All Database	es 🔰	🗙 for			Go				
	PubMed		~			2.2		BIOLE	cnnolog	SY
SITE M	Protein Nucleotide		es NC	Bl do?			Hot Spots	Inform	mation	
Alphabeti	CoreNucleoti	ide	1. 100						nation	
Resource	EST		lin 198	38 as a nation	nal resourc	ce for 🔹 As	sembly Archive	(Gonf	Rank)	
About N	GSS		hacoc	conducts ror	NCBI creat	tes Ch	isters of		Jankj	
An introdu	Genome		nal biol	oav develor	search in Seoffware	tools ortho	logous groups			
NCBI	Books		a aeno	me data, and	dissemin	ates .		Poforor		205
GenBar	CancerChron	nosomes	inform	ation - all for	the better	Co	ffee Break,	Referen	ice genon	ies,
Sequence	3D Domains	omains	_ing of n	nolecular pro	cesses	Gene	es & Disease, L'Handhaak	Gene se	equences,	
submissi	Gene		man he	alth and dise	ease. <u>More</u>	<u>2</u>	I Handbook	Taxono	mv. ESTs. J	lournal
and softw	Genome Proj dbGeP	ject				► Ele	ectronic PCR	articles	(otc)	
Literatu	GENSAT		Bank	vs. <u>Refse</u>	<u>n</u>			articles	(etc)	
databas	GEO Profiles		out the	distinctions h	oetween	National I	ibrony of Madiaina	•		
PubMed,	GEO Dataset	ts	and Uni	Prot? Click <u>he</u>	re for a N	National Center fo	or Biotechnology Information			
Books, ai	Journals	5	v	latabases and	cirem um	All Databases 🗸)[Search
Central			100		NCBI H	łome	Welcome to NCBI			Popular Resources
Molecul	ar				Resour	rce List (A-Z) ources	The National Center for Biotechnology Informat About the NCBI Mission Organization NC	tion advances science and health by providing access	s to biomedical and genomic information.	PubMed Bookshelf PubMed Central
databas	es		Prote	in Clus		als & Bioassays Software	Submit	Download Transfer NCBI data to your computer	Learn Find help documents, attend a class or	BLAST Nucleotide
Sequence	es,	New	Entrez Pro	ntein Clusters da	tabase Domain	RNA 15 & Structures	databases		watch a tutorial	SNP Gene
structures	s, and		Enderin		Genes	& Expression	· • • •	_		Protein PubChem
taxonomy		The new E	ntrez Protein	Clusters database (efSeq) proteins if	e is a collec _{seron}	es & Maps	Develop	Analyze	Research	NCBI News & Blog
Genomi	c biology	genomes o	of prokaryotes	, plasmids, and or	ganelles, ti	s	Use NCBI APIs and code libraries to build applications	Identify an NCBI tool for your data analysis task	Explore NCBI research and collaborative projects	success! 23 Jan 2023 SARS-CoV-2 genomic data is critical for monitoring the viral spread and evolution of the COVID-19 operfemin
The huma	an denome.	been group	ped and annot	ated based on se		ce Analysis		88 ⁸	Ś	identifying newly emerging variants, and developing Full-scale access to microbial Pathogen Detection data in the cloudt
whole ger	nomes,	Clusters de	ction. Click h atabase	ere to find out mor	e about the Training	g & Tutorials	COVID-18 Information			18 Jan 2023 NCBI's Pathogen Detection resource now provides selected data on the Google Cloud Platform (GCP)
and relate	ed		utabas6.		Variatio	n	Public health information (CDC) Research info	ormation (NIH) SARS-CoV-2 data (NCBI) Preventio	n and treatment information (HHS) Español	RefSeq Release 216

Research highlights, service updates and more

Tues 6th Mar - Thurs 8th | Course

Bioinformatics Resources for Protein Biology

European Molecular Biology Laboratory – European Bioinformatics Institute

Nucleotides,

Protein function,

Protein-protein

interactions

Genomes,

CARD

Use or Download Copyright & Disclaimer

telp Us Curate #AMRCuration #WorkTogether

The Comprehensive Antibiotic Resistance Database

A bioinformatic database of resistance genes, their products and associated phenotypes.

6657 Ontology Terms, 5031 Reference Sequences, 1931 SNPs, 3013 Publications, 5078 AMR Detection Models

Resistome predictions: 377 pathogens, 21079 chromosomes, 2662 genomic islands, 41828 plasmids, 155606 WGS assemblies, 322710 alleles

CARD Bait Capture Platform 1.0.0 | State of the CARD 2021 Presentations & Demonstrations

CARD the Comprehensive Antibiotic Resistance Database

Genes (>5000) Custom homology tool Carefully curated **ontology**

JGI 🌋		D		JGI HOME L	<u>.OG IN</u>		
Home Search	Distributio	n Graphs	Biogeographical Metada	ta Statistics Refe	erences Team He	alp News	
Studies	23,258	Welcon GOLD:G	ne to the Genome enomes Online Databa	s OnLine Databa	Se Web resource for co	mprehensive access to information	GOLD Release v.5
Biosamples	<u>79,418</u>	their ass	ociated metadata, arou	und the world.			
Sequencing Projects 🕤	<u>79,471</u>		4 5 .	1		A A A A	
Analysis Projects 🕚	<u>65,042</u>		1. Regis	ster		2. Annotate	3. Publish
Download Excel Data file File last generated: 22 Feb, 2016		Regis	eter your project inform the Genomes Onlin Register	nation and Metadata i ne Database	n Annotate your i with	microbial genome or metagenome h IMG/ER or IMG/MER	Standards in Genomic Sciences Publish your genome or metagenome in open access standards-supportive journal. Publish
		Studies Metag Non-M	enomic <u>637</u> letagenomic <u>22,621</u>	Biosamples Classification Ecosystems Host-associated 13 Engineered 2,480 Environmental 9,470	<u>.350</u> <u>0</u>	Sequencing Projects Complete Projects 8.015 Permanent Drafts 33.298 Incomplete Projects 35.607 Targeted Projects 1.565	Analysis Projects Genome Analysis <u>48,429</u> Metagenome Analysis <u>5,627</u> Combined Assembly <u>101</u> Genome from Metagenome <u>1,499</u> Metatranscriptome Analysis <u>1,280</u> Single Cell (Screened) <u>1,681</u> Single Cell (Unscreened) <u>781</u> Transcriptome Analysis <u>0</u>
		Organism	S	Special Projects		JGI Projects	Projects with Genbank Data
		Organis Archa Bacte	ms <u>72,826</u> ea <u>1,198</u> ria <u>55,157</u>	Type Strain Projects 5 GEBA Projects 5 HMP Projects 5 2.92	5 <u>,328</u> <u>17</u> 1	JGI Studies <u>1,111</u> JGI Biosamples <u>19,723</u> JGI Sequencing Projects <u>30,927</u>	Seq. Projects <u>42,394</u> Archaeal Projects <u>564</u> Bacterial Projects <u>35</u> 732

GOLD Genomes Online Database

Genome projects

Standards-compliant metadata

Kyoto Encyclopedia of Genes and Genomes

Help Search KEGG Search BRITE Get Entry **KEGG Home** Introduction KEGG: Kyoto Encyclopedia of Genes and Genomes Overview Release notes A grand challenge in the post-genomic era is a complete computer **KEGG Databases** representation of the cell, the organism, and the biosphere, which will enable Current statistics computational prediction of higher-level complexity of cellular processes and organism behaviors from genomic and molecular information. Towards this **KEGG Identifiers** end we have been developing a bioinformatics resource named KEGG as part of the research projects of the Kanehisa Laboratories in the Bioinformatics **KEGG Software** Center of Kyoto University and the Human Genome Center of the University of Tokyo. KGML **KEGG API** Main entry points to the KEGG web service **KEGG FTP** KEGG2 KEGG Table of Contents Update notes KEGG pathway maps for biological processes PATHWAY Functional hierarchies of biological systems BRITE Feedback GENES Gene catalogs and ortholog relations in complete genomes LIGAND Chemical compounds, drugs, glycans, and reactions GenomeNet Organism-specific entry points to the KEGG web service KEGG Organisms Choose Organism Go Help Subject-specific entry points to the KEGG web service DRUG Drug structures, structure maps, and classification Glycan structures, pathway maps, and analysis tools GLYCAN REACTION Reactions and chemical structure transformation patterns KEGG automatic annotation server KAAS

Genomes Orthology information Protein functions **Biochemical pathways**

Limited access now (#%#!)

A word about "metadata"

\$@*#(*!)!!

PERSPECTIVE

nature biotechnology

Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications

Pelin Yilmaz^{1,2*}, Renzo Kottmann¹, Dawn Field³, Rob Knight^{4,5}, James R Cole^{6,7}, Linda Amaral-Zettler⁸, Jack A Gilbert9-11, Ilene Karsch-Mizrachi12, Anjanette Johnston12, Guy Cochrane13, Robert Vaughan13, Christopher Hunter¹³, Joonhong Park¹⁴, Norman Morrison^{3,15}, Philippe Rocca-Serra¹⁶, Peter Sterk³, Manimozhiyan Arumugam¹⁷, Mark Bailey³, Laura Baumgartner¹⁸, Bruce W Birren¹⁹, Martin J Blaser²⁰, Vivien Bonazzi²¹, Tim Booth³, Peer Bork¹⁷, Frederic D Bushman²², Pier Luigi Buttigieg^{1,2}, Patrick S G Chain^{7,23,24}, Emily Charlson²², Elizabeth K Costello⁴, Heather Huot-Creasy²⁵, Peter Dawyndt²⁶, Todd DeSantis²⁷, Noah Fierer²⁸, Jed A Fuhrman²⁹, Rachel E Gallery³⁰, Dirk Gevers¹⁹, Richard A Gibbs^{31,32}, Inigo San Gil³³ Antonio Gonzalez³⁴, Jeffrey I Gordon³⁵, Robert Guralnick^{28,36}, Wolfgang Hankeln^{1,2}, Sarah Highlander^{31,37}, Philip Hugenholtz³⁸, Janet Jansson^{23,39}, Andrew L Kau³⁵, Scott T Kelley⁴⁰, Jerry Kennedy⁴, Dan Knights³⁴, Omry Koren⁴¹, Justin Kuczynski¹⁸, Nikos Kyrpides²³, Robert Larsen⁴, Christian L Lauber⁴², Teresa Legg²⁸ Ruth E Ley⁴¹, Catherine A Lozupone⁴, Wolfgang Ludwig⁴³, Donna Lyons⁴², Eamonn Maguire¹⁶, Barbara A Methé⁴⁴, Folker Meyer¹⁰, Brian Muegge³⁵, Sara Nakielny⁴, Karen E Nelson⁴⁴, Diana Nemergut⁴⁵, Josh D Neufeld⁴⁶, Lindsay K Newbold³, Anna E Oliver³, Norman R Pace¹⁸, Giriprakash Palanisamy⁴⁷, Jörg Peplies⁴⁸, Joseph Petrosino^{31,37}, Lita Proctor²¹, Elmar Pruesse^{1,2}, Christian Quast¹, Jeroen Raes⁴⁹, Sujeevan Ratnasingham⁵⁰, Jacques Ravel²⁵, David A Relman^{51,52}, Susanna Assunta-Sansone¹⁶, Patrick D Schloss⁵³, Lynn Schriml²⁵, Rohini Sinha²², Michelle I Smith³⁵, Erica Sodergren⁵⁴, Aymé Spor⁴¹, Jesse Stombaugh⁴, James M Tiedje⁷, Doyle V Ward¹⁹, George M Weinstock⁵⁴, Doug Wendel⁴, Owen White²⁵, Andrew Whiteley³, Andreas Wilke¹⁰, Jennifer R Wortman²⁵, Tanva Yatsunenko³⁵ & Frank Oliver Glöckner^{1,2}

These databases are huge

GenBank® Release 158

GenBank Release 158 (February 2007) contains over 67 million sequence entries totaling more than 71 billion base pairs. Release 159 is scheduled for April 2007. GenBank is accessible via the Entrez search and retrieval system. The flatfile and ASN.1 versions of the Release are found in the "genbank" and "ncbi-asn1" directories respectively at:

ftp.ncbi.nih.gov

Uncompressed, the Release 158 flatfiles are 252 Gigabytes and the ASN.1 version is about 217 Gigabytes. The data can also be downloaded at a mirror site:

bio-mirror.net/biomirror/genbank

Release 182 (February 2011): 124,277,818,310 bases, from 132,015,054 reported sequences Release 200 (February 2014): 157,943,793,171 bases, from 171,123,749 reported sequences Release 212 (February 2016): "We're sorry, but the page cannot be found" Release 223 (December 2017): 249,722,163,594 bases, from 206,293,625 sequences Whole-genome shotgun: > 500,000,000,000 bases Release 236 (December 2019): 399,376,854,872 bases, from 216,214,215 sequences Whole-genome shotgun: 7,323,655,233,013 bases Release 240 (October 2020): 698,688,094,046 bases from 219,055,207 sequences Whole-genome shotgun: 9,627,627,030,647 bases Release 246 (October 2021): 1,014,763,752,113 bases from 233,642,893 sequences Whole-genome shotgun: 15,089,161,465,959 bases Release 252 (October 2022): 1,562,963,366,851 bases from 240,539,282 sequences Whole-genome shotgun: 18,787,298,109,534 bases

Best Approach

Use exact local alignment (i.e., Smith-Waterman) to find optimal matches between query sequence and all database sequences

This is impractical given S-W complexity (although hardware and software speedups exist)

We need heuristics!!

What we *really* need

- Search methods that are not necessarily perfect, but maintain high levels of sensitivity and specificity relative to S-W
- Statistics to tell us when observed similarities are likely to be significant
 - the expectation value how many matches to the database are expected by chance?

An important tradeoff...

NQARP

DEAKP

Score each pair of residues – consider every possible alignment

	D	E	А	К	Р
N					
Q					
А					
R					
Р					

Require an exact match of length *L* to "seed" the alignment

FASTA (Pearson and Lipman, 1988)

 Define the *ktup* parameter, which is the minimum length of exact match needed to seed an alignment

- Nucleotides: *ktup* typically 4-6
- Amino acids: *ktup* 1-2

FASTA uses a lookup table to store k-tuple values

DQATS

AR	3
NQ	1
QA	2
RP	4

AT	3
DQ	1
QA	2
TS	4

Find 'diagonals' (no gaps!) in the sequence plot that have a high proportion of matching *k*-tuples

(PAM250 is used to weight matches of different k-tuples)

Additional steps: choose and rescore best diagonals Statistics: randomization approach (many replicates)

BLAST (Altschul et al., 1990) (Altschul et al., 1997)

Basic Local Alignment Search Tool

• FASTA isn't fast enough!

• Can we trade away small amounts of optimality for further gains in performance?

Basic Principles of BLAST

- Exact matches are great and all, but they're not perfect
- Find maximal <u>high-scoring pairs</u>: for a query / database sequence pair, find the best region(s) where:
 - The local alignment score (no gaps allowed!) is above a threshold S, and
 - The score cannot be increased by extending or trimming the local alignment (... maximal)

Basic Principles of BLAST

- Instead of running full DP (à la S-W):
- Identify matches that contain two word pairs (or *hits*) of length *w*, with a score of at least *T*, that are separated by no greater than A nucleotides
- 2. <u>If word pairs are found</u>, use these to seed the high-scoring pairs
- 3. <u>If HSPs are found</u>, perform dynamic programming anchored with HSPs to complete the alignment

Try to extend matches, stop trying when a move drops the score below a given threshold

Gaps

 Start from the middle of the high-scoring pair, and proceed with DP forward and backward until the path falls below a threshold

- DP is expensive, but we've saved ourselves a lot of time!
 - Most sequence pairs are *not* homologous
 - Anchored DP will be a *lot* faster

Local alignment significance

• How are alignment scores distributed?

 More to the point, what is the distribution of best alignment scores between a random pair of sequences?

Follows the extreme value distribution

Karlin-Altschul statistics aka **no permutations, thanks**

- The expected (=mean) score between a pair of random sequences is the mean of an extreme value distribution
- Given a scoring matrix (such as PAM250) and a set of amino acid frequencies, we can compute the parameters λ and K that define this distribution

Karlin-Altschul statistics

Karlin-Altschul statistics

- Different matrices (PAM, BLOSUM, etc.) define different EVDs different K and λ
- We can *normalize* the search score S to equalize the effects of different matrices:

$$S' = \frac{\lambda S - \ln K}{\ln 2}$$

So we can compare bitscores from different matrices directly

From P to E

Expectation value (e-value):

The expected number of hits to a database of random sequences of the **same total** length as the "real" sequence databases

$$E = \frac{nm}{2^{S'}}$$

n = query sequence length*m* = database length

Protein-protein BLAST (BLASTP):

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins

PSI-BLAST (1997)

 Replace trusty old PAM or BLOSUM with a position-specific scoring matrix

 Iterate query – Position-specific scoring matrix (PSSM) procedure

Run BLAST!

 Collapse significant local alignments into a multiple alignment

• Build a **column-specific** matrix from the multiple alignment – this is similar to the PAM matrix

	Position 1	Position 2	Position 3
А	1.9	-4.0	-2.2
С	-5.0	-2.4	-3.1
D	-2.3	-0.5	0.1

 Pseudocounts (based on substitution matrix) are added to avoid the embarrassing -∞ situation

• Iterate the search: BLAST using the profile rather than a single sequence, as the query

- When do we stop?
 - When no new hits are found
 - When we get tired of hitting the 'BLAST!' button

BLAST vs. FASTA

 In very rough terms, BLAST is about ten times faster than FASTA (but it depends on the data set and the specific tweaked version of the programs)

 FASTA is generally thought to be more sensitive than BLAST (although this again depends on the data set)

Discontiguous MEGABLAST

and PatternHunter

• BLAST isn't fast enough!

• Can we (etc...)

MEGABLAST!!!

Nucleotide seed length

BLASTN!: 111111111

MEGABLAST!!!:

BLASTN is good for distant-ish sequences (but why not use BLASTP?) but kinda slow

MEGABLAST!!! is good for very, very, very similar sequences and fast

Continuous Words

 BLASTN (for nucleotides) has a word length of 11 to find the initial hits. This word must be contiguous

AA**ACGATCCGAAA**GTTT GC**ACGATCCGAAA**ATCC

Discontinuous Words

Search for words defined by a 'model':

Model: 111010010100110111 AAACGAACAGAGAGTTTC AAATGATCCGAAAGCTTC

Similar accuracy

PatternHunter: Ma et al., 2002

PatternHunter is quite a bit faster than the contiguous-word BLAST family

Seq1	Size	Seq2	Size	РН	PH2	MB28	Blastn
M. pneumoniae	828 K	M. genitalium	589 K	10 s/65 M	4 s/48 M	1 s/88 M	47 s/45 M
E. coli	4.7 M	H. influenza	1.8 M	34 s/78 M	14 s/68 M	5 s/561 M	716 s/158 M
A. thaliana chr 2	19.6 M	A. thaliana chr 4	17.5 M	5020 s/279 M	498 s/231 M	21 720 s/1087 M	∞
H. sapiens chr 22	35 M	H. sapiens chr 21	26.2 M	14 512 s/419 M	5250 s/417 M	∞	∞

But it costs money!

Li et al. (2002) *Bioinformatics* Reviewed in Stojanov (2018) *Annals of West University of Timişoara*

Other important issues

 Low complexity sequence (e.g., AGAGAGAG) can lead to inflated statistics and should be removed prior to the search

• We are still dependent on the choice of substitution matrix!

DIAMOND: faster BLAST with several tricks

- Double indexing: precompute all "seeds" in the database *and* query sequences, compare in lexicographical order (memory cache efficient)
- "Shaped" seeds (similar to discontiguous MEGABLAST, but for proteins)
- Reduced amino acid alphabet! [KREDQN] [C] [G] [H] [ILV] [M] [F] [Y] [W] [P] [STA]
- Other stuff

Buchfink et al. (2015) Nat Meth

Non-pretty example

- 1273 genomes of *Enterococcus faecium* vs. 21,000 reference genomes from RefSeq
- The big question: are there genes in *Enterococcus* with very, very, very similar homologs in distantly related groups of bacteria?

https://fineartamerica.com/featured/3-entero coccus-faecium-sem-scimat.html

DIAMOND-BLASTX

- Query: protein-coding genes from an *E. faecium* plasmid
- Database: predicted proteins from 21,000 genomes
- VERY stringent thresholds: minimum 99% identical, at least 90% of total length
- Run locally

Query	Subject	Taxonomic range	Function	% Identity	e-value	Query star	Query end	Length
18_length=47093_depth=1.75x	WP_000331160.1	[Bacteria]	MULTISPECIES: ATP-binding protein	100	0	34273	36717	2444
18_length=47093_depth=1.75x	WP_074371015.1	[Staphylococcus aureus]	ATP-binding protein	99.9	C	34273	36717	2444
18_length=47093_depth=1.75x	WP_116449323.1	[Streptococcus agalactiae]	ATP-binding protein	99.9	C	34273	36717	2444
18_length=47093_depth=1.75x	WP_001574271.1	[Bacilli]	MULTISPECIES: YtxH domain-containing protein	99.9	0.00E+00	36723	38897	2174
18_length=47093_depth=1.75x	WP_060649663.1	[Staphylococcus aureus]	YtxH domain-containing protein	99.7	0.00E+00	36723	38897	2174
18_length=470 <u>93_depth=</u> 1.75x	WP 041160410.1	[Clostridioides difficile]	YtxH domain-containing protein	99.2	0.00E+00	36723	38 <u>89</u> 7	2174
18_length=47093_depth=1.75x	WP_001574275.1	[Bacteria]	MULTISPECIES: tetracycline resistance ribosomal protection protein Tet(M	100	0.00E+00	41204	43120	1916
18_length=47093_depth=1.75x	WP_012775613.1	[Streptococcus suis]	tetracycline resistance ribosomal protection protein Tet(M)	99.5	0.00E+00	41204	43120	1916
18_length=47093_depth=1.75x	WP_002333004.1	[Bacilli]	MULTISPECIES: hypothetical protein	99.4	0.00E+00	4822	3212	1610
18_length=47093_depth=1.75x	WP_000136908.1	[Bacilli]	MULTISPECIES: recombinase family protein	99.8	0.00E+00	26267	24708	1559
18_length=47093_depth=1.75x	WP_206918171.1	[Lactococcus sp. LG606]	recombinase family protein	99.8	0.00E+00	26249	24708	1541
18_length=47093_depth=1.75x	WP 002294513.1	[Bacteria]	MULTISPECIES: ABC-F type ribosomal protection protein Lsa(E)	100	0.00E+00	18264	16783	1481
18_length=47093_depth=1.75x	WP_074371031.1	[Staphylococcus aureus]	ABC-F type ribosomal protection protein Lsa(E)	99.8	0.00E+00	18264	16783	1481
18 length=47093_depth=1.75x	WP 222317233.1	[Vagococcus lutrae]	ABC-F type ribosomal protection protein Lsa(E)	99.8	0.00E+00) 18264	16783	1481
18_length=47093_depth=1.75x	WP_000813488.1	[Bacteria]	MULTISPECIES: DUF87 domain-containing protein	100	1.35E-298	30162	31544	1382

Not super-informative

RefSeg ID!

Resistance to tetracycline (bad)

Resistance to multiple drug classes (very bad)

STILL NOT FAST ENOUGH!!! The Burrows-Wheeler Transform

Resequencing

RARE GENETIC VARIANTS IN HEALTH AND DISEASE

DNA sequencing Reference human assembly A MARINE STREET, MARINE

BWA:

The Burrows-Wheeler Aligner

Li and Durbin, Bioinformatics 2009

BWA:

The Burrows-Wheeler Aligner

Li and Durbin, Bioinformatics 2009

Recursive search by adding prefixes

Recursive search by adding prefixes

$$\min(ol) = C(o) + O(o, \min(l) - 1) + 1 = 3 + 1 + 1 = 5$$

$$\max(ol) = C(o) + O(o, \max(l)) = 3 + 2 = 5$$

 $\min(ool) = C(o) + O(o,\min(ol) - 1) + 1 = 3 + 3 + 1 = 7$ max(ool) = C(o) + O(o,max(ol)) = 3 + 3 = 6

min(ool) > max(ool) = ???

Why this is awesome: Sequence reads are effectively searched against different parts of the reference genome <u>at the same time</u>

Also, notice that the formula only makes use of the BWT string – everything else can be forgotten

• Why this is slightly less awesome: Preprocessing requires many GB of memory

• What about mismatches?

Searching for "ggta" in a string that lacks "ggta" but has a one-mismatch alignment to "ggtg"

Langmead et al. (2009) Genome Biol

BWA refinements

Allowing mismatches: maximum deviation from the search string

• Store searches in a heap to prioritize the lowest mismatches in the search so far

Custom penalties for mismatches, insertion and deletions

Double indexing: BWTs from both ends meet in the middle (avoids massive amounts of futile backtracing) Memory refinements: store only parts of the BWT and O matrix, calculate the rest on the fly

	Single-er	nd		Paired-end				
Program	Time (s)	Conf (%)	Err (%)	Time (s)	Conf (%)	Err (%)		
bowtie-125	1966	88.0	0.07	1701	91.0	0.37		
BWA-125	3021	93.0	0.05	3059	97.6	0.04		
MAQ-125	17506	92.7	0.08	19388	96.3	0.02		
SOAP2-125	555	91.5	0.17	1187	90.8	0.14		

One million pairs of 32, 70 and 125 bp reads, respectively, were simulated from the human genome with 0.09% SNP mutation rate, 0.01% indel mutation rate and 2% uniform sequencing base error rate. The insert size of 32 bp reads is drawn from a normal distribution N(170, 25), and of 70 and 125 bp reads from N(500, 50). CPU time in seconds on a single core of a 2.5 GHz Xeon E5420 processor (Time), percent confidently mapped reads (Conf) and percent erroneous alignments out of confident mappings (Err) are shown in the table.

SOAP2: somewhere between 300x and 1200x faster than BLAST

Program	Time (h)	Conf (%)	Paired (%)	
Bowtie	5.2	84.4	96.3	
BWA	4.0	88.9	98.8	
MAQ	94.9	86.1	98.7	
SOAP2	3.4	88.3	97.5	

Table 2. Evaluation on real data

The 12.2 million read pairs were mapped to the human genome. CPU time in hours on a single core of a 2.5 GHz Xeon E5420 processor (Time), percent confidently mapped reads (Conf) and percent confident mappings with the mates mapped in the correct orientation and within 300 bp (Paired), are shown in the table.

Where to try

- BLAST
 - <u>http://www.ncbi.nlm.nih.gov/BLAST/</u>
 - Different variants are included in different options
 - MEGABLAST!!! and Discontiguous MEGABLAST!!! are options for BLASTN
 - BLAST+ package:
 - <u>http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download</u>
- FASTA
 - <u>http://www.ebi.ac.uk/fasta33/</u>
- SSEARCH for Smith-Waterman alignment
 - Included in the FASTA package (<u>ftp://ftp.hgc.jp/pub/mirror/virginia/fasta/</u>)
- BWA:
 - <u>http://bio-bwa.sourceforge.net/</u>